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We consider a special extension of Clifford algebras and show that these 
generalized Clifford algebras are naturally equipped with a metric defined by a 
fundamental form of degree n which is SL(n, C ) | SL(n, C ) invariant. Using the 
embedding of the quaternions in the generalized Clifford algebras, in the Hermi- 
tian limit, we obtain an algebraic description of the inclusion of the Minkowski 
space into the hyperspin manifold. 

The aim of this paper is to establish a connection between generalized 
Clifford algebras (GCA) and hyperspin manifolds (HM). The associative 
GCA have been studied a~nd classified by Morinaga and Nono (1952). Yama- 
zaki (1964), Popovici and Gh6orghe (1966a,b), and Morris (1967, 1968). 
The HM have been defined by Finkelstein (1986) and Finkelstein et al. 
(1986) to reconcile the ideas of Kaluza-Klein theory with the notion of spin 
manifold. They built a space supplied with an n - i c  metric which reduces, 
in a special limit, to the Minkowski space-time. 

Using results of Cartan (1898), who established that quaternions are 
included in GCA, we obtain, after providing GCA with an appropriate 
metric, the algebraic approach of the space-time description mentioned 
above. 

This paper is organized as follows: in Section 1 we briefly review some 
properties of the GCA and the Cartan inclusion. Section 2 is devoted to the 
construction of an n-scalar product of elements of the GCA. This defines an 
n-metric which is shown to be SL(n, C) | SL(n, C) invariant. In Section 3, 
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we first recall the arguments leading to the concept of hyperspin manifold. 
We next obtain its algebraic description using the generalized Clifford num- 
bers in the Hermitian limit. 

1. PRELIMINARIES 

The GCA cg~n) is generated by a set o fp  canonical generators e j , . . . ,  ep 
fulfilling 

e~ej=cosgcJ-~ eT= l, i , j =  l . . . . .  p (l.1) 

whereco = exp(2irc/n) is an nth primitive root of unity and sg(x) is the usual 
sign function, cr is an extension of the usual n = 2  Clifford algebra. The 
case of one generator as well as the associated trigonometry has been investi- 
gated in more detail by Fleury et al. (1991). The p = 2  case was considered 
at the end of the last century to extend quaternions (n = 2) to nonions (n = 3) 
by Sylvester and Clifford (see Cartan, 1909, pp. 206 and 217 and references 
therein) and also to n2-ions by Sylvester (1884) and Cartan (1898). Those 
algebras (p = 2) were rediscovered by Weyl (1932) and led to quantum mech- 
anics in finite discrete space; then Schwinger (1960) proved that such opera- 
tors define a complete basis of unitary operators. When p > 2 (the case n = 
2 excepted), these algebras have to be considered as C-algebras. Because 
x/~ = ~ is also a complex number, c~-) could have been equivalently defined 
with the condition e7 = -  1. The special case when x/~ does not belong to 
the field on which cgp~,~ is built has been investigated by Morris (1967, 1968) 
and Thomas (1974). 

The R-algebra ~2~ with the definition e~ 2 = - 1 (i = 1, 2) is, as mentioned, 
the quaternions, while the C-algebra case gives the biquaternions. Let us 
mention, for instance, that the Pauli numbers x = x0 + x~ o-j + x20-2 + x30-3 (o-~ 
are the Pauli matrices) cannot define an R-algebra because 0-702 = io-3. 

In the following, we will consider the C-algebra cg~-~: 

~r x =  Z ~ X a b e l e 2  ; XabE C 

a,h ~ 0 

It has been shown by Cartan (1898) that for integers m < n, cg~,,,) is included 
in cg~,~. It has also been proved by Morinaga and Nono (1952), Popovici 
and Gh+orghe (1966b), and Morris (1967, 1968) that ~2 ~") is isomorphic to 
the set of n • n complex matrices. A proof can be given as follows: Consider 
the n 2 quantities 

n-1 
co e2el ; O<_a, b < n -  1 (1.2) 

n k=O 
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They constitute an equivalent basis of cg~2), as can be easily checked�9 Their 
multiplication law is 

and the mapping 

hobh~d = hacl(~bc ( 1.3) 

hab f--~ H~ (1.4a) 

where H~h is the n x n matrix with elements 

(Hab)i j  = (~ai 6jb (1.4b) 

is an isomorphism. This provides a matricial representation for e~ and e2' 

E1 = , E2 = .. 

1 
o 0 

These matrices play a central rote in the literature on generalized Clifford 
algebras. 

To achieve our goal, we will, in Cartan's way, define the cg~,,,I-) space 
as the one generated by hob with the condition 0_<a, b_<m-1 .  The two 
canonical generators of cga0"ln) are obtained with the inverse of  the trans- 
formation (1.2): 

m l 
f 1= 2 hk+l.k (wi thh  ...... - ~ - h o , , , - l )  

k=o (1.5) 
m I 

f2 = ~ O%~k 
k=0 

where we used 0 = exp(2iTc/m). One can check that 

f ,  . f 2 = o A  . f~ 
m -  1 . . . . . . . .  p,,l~ (1.6) 

f '  - f 2 -  Z hkk = 
k=l 

The operator P'"P" projects ~'2 (") on ~2 (''!"). It has the matrix representation 

1 0 / )  

�9 " " l I It/'l 0 /} 
" . s  D I  

0 0 
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(g2 ("1") defines a m2-dimensional C-algebra with p,,,I, its neutral element for 
the multiplication. But it is not a subalgebra of  (g2 ("). Instead, consider the 
(rn 2 + 1)-dimensional C-algebra: 

c~o- I,) _ cp(ml-) ,~ C(I - p,-I-) 
2 - -  w 2  (1.7) 

with elements 

n - 1  

~ = x + , ~  
k = m + l  

h k k = X + ~ ( l _ p m l . )  

where x is an element of  ~2 ('"1") and X an ordinary complex number. We 
have the relations 

f, .A=of2.f ,  
(1 _ p,,q,)2 = 1 - P"J" 

(1 _p,,,l,,) . f = f ( 1  - P'"I") = 0 

(1.8) 

Obviously, the case m = 2 provides a natural inclusion of biquaternions 
in cg~-). In his definition of  n2-ions, Cartan used the basis hab instead of  

a b ele2. We conclude this section by noting that similar arguments lead to the 
inclusion of (s @ cg~--,,,I,) in c~2("). 

2. CONSTRUCTION OF A METRIC ON GCA. 
ITS SYMMETRY GROUP 

The definition of a metric on Clifford or more generally Cayley-Dickson 
algebras leads naturally to a quadratic metric (see, for instance, Wene, 1984). 
This is no longer true for GCA, for which the metric is a homogeneous form 
of degree n [see (1.1)]. The p =  1 case has already been handled by Fleury 
et al. (1991). We will follow the same procedure for the ~2 (") space. For  x, 
y elements of  ~, ~"), their product is 

z= 2 x~he~e ycdeCle~ = 2 zAse'~ef (2.1a) 
a,b=O / \c,d=O A,B=O 

with 

n - I  

ZAB= ~ AAa,Bb(x)yab ; 
a,b=O 

AA~,Bb(X)=XA-o,S-bO~ -'~w-b) (2.1b) 

Had we taken " -  n_ e l -  e2--1 in the definition of c6~"), we would have obtained 
an overall minus sign in the previous equation. 
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Just as for the case p = 1, the problem of  the inverse leads us to solve 
the equation 

x. y = ?X(x)y = ) 

Proposition 2.1. We have 

det ~ ( x ) =  [det A(x)]" 

where A(x) is the n x n matrix with coefficients 
r t - - ]  

aA~(x) = Z -~' xA-o,;co ; A, a = 0  . . . . .  n -  1 
i = 0  

Proof Looking at the n2x n 2 matrix ~(x)  of  (2.1b), we see that it has 
the structure of  a direct product:  

,4(x) = y. M, @ N, 
i 

where M and N are now n x n matrices. The first couple of  indices (Aa) is 
related to the matrix M and the second (Bb) to the matrix N. Noticing that 

depends only on the difference B -  b, using the matrix El of  Section 1, one 
has in fact 

n - - 1  

a(x) = Z x, | El 
i = 0  

with 

( X i ) A a  = X A _a,i(.O - a i  

I f  we diagonalize G ,  we obtain E2 and A(x) becomes 

n 1 

a'(x) = Z x, | E~ 
i=O 

which has a diagonal block structure: 

A,(x) 

a'(x) = A2(x) . 0 
" 

0 &(x) 
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with 
n--I 

(aj(x))Ao-- Z x,,-o,, c~ 
i=0 

The n x n Aj matrices satisfy 

( /~ j+  1 (X)  )ab = ( Aj  (X)  )a+ l,b +1 

and hence 

And finally 

det Al (x)=det  A2(x) . . . . .  det An(x)= det A(x) 

det A(x) = det A'(x) = [det A(x)]" �9 

Note that the use of the isomorphism (1.4) leads to X = A(x) as a matrix 
representation of x, and to Proposition 2.1 ; but it will be convenient not to 
utilize the matrix representation, as we will see later. We can use A(x) to 
provide oK2(") with a pseudonorm: 

[]xll 2" = det[A(x)A+(x)] (2.2) 

In Section 3 this will reduce to 

Ilxll" = det A(x) 

For a quaternion q, element of (g}"), one gets, for instance 

ilq112 = q02_l_ 2 2 2 ql + q2+ q3 

Due to the property of 

A(XlX2) -- A(x0A(x2) (2.3) 

it turns out that cg~,~ is a composition algebra, but not an integer algebra. 
Moreover, if x is not invertible, det A(x)=0  and so A is degenerate. In 
accordance with the Hurwitz theorem, quaternions and complex numbers 
are the only integer and nondegenerate algebras. From the homogeneous 
form det A, one can build an n-linear symmetric form allowing the cal- 
culation of the scalar product of n different vectors (see, for instance, 
Kwasniewski, 1985). 

Consider the direct sum cg2('") | Cgz~"-'<n) with element x~ @ x2. What is 
the consequence on the metric of such a splitting? Call y =Yl @ Y2 its inverse 
element. Because 

XlX 2 = X2X 1 = 0 
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for ( x l ,  x2) element of  cg2('") x Cg2(~-ml~) ' one has 

xy=xl)q Ox2y2 = 1 = p(,,,r~) O (1 - p(,,,I,)) 

The consequence on the metric is 

A(x, @ x2) = (A'"(0x') 

where 

5 0 9  

n - I  

x a-ai (2.4a) ( & , ( x , ) ) A . =  E , ....... ," 
i = 0  

n - -  m - 1 

(A--,-(x2))A, = Z x2~ o.,p-,,i (2.4b) 
i = 0  

are respectively m x m and ( n -  m) x ( n -  m) matrices, 0 = exp(2in/m), and 
p = exp[2irc/(n-m)]. As a special case, consider x2 = ~ ( 1 -  p(,,I,}) [that is, 
the only component of x2 different from zero is (x~)oo]. Then, 

A(xj, ~)-  " - "  -A. A,,,(x,) (2.5) 

and taking ~ = 1 and m = 2, one has for the Pauli numbers 

a(x)  = x~o- d -  x ~ -  x 2 

which is just the Minkowski metric. With the isomorphism (l.4a) one gets 
the spinorial construction of space-time of  Cartan (1938). 

The determinantal property of  Proposition 2.1 is a consequence of the 
algebraic structure of  ~2 (") and can be understood in the context of  the smash 
product (Long, 1976) 

which is a twisted tensorial product reproducing (1.1). 
The next point of this section is the study of the symmetry group of  the 

n-metric det A 

Proposition Z2. SL(n, C ) |  SL(n, C) is the symmetry group of det A. 

Proof It is obvious that g2 (") can be considered as a sum of g~"Ltype 
algebras. Notice that this sum is not direct. Take one of  these algebras, 
g(n) ~{,,), generated by e(,,). Consider the element of ~oc'~("}~ (~) �9 

' } 
Ra = exp ~Opef~) (2.6) 

k p =  I 

0 ) (2.4) 
zX,,_,,,(x9 
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and write the complex number ~op as 

r --= Xp q- ~ Pyp 

Then Ra factorizes into "real" and "imaginary" parts: 

(R)~r=exp Xpef~) = F, mushp(x)ef~) 
Lp=I p = 0  

(R)~i=exp ~ Ye~ e(~o - ~ mUSp(y)~Pef~) 
p = l  p = 0  

where we use the mus and mush functions introduced by Fleury et al. (1991) 

m u s i  (x) 2 Xil " " " Xi~ Z., 
~.p=0 P! i,...ie= J 

i l+.. .+tp=na+i 

co 1 n--I } -  mushi ( x )  = P! ~ xi, �9 �9 �9 xi,  
u il...if = 1 

i l+.. .+tp=na+i 

which are an extension of the usual circular and hyperbolic functions and 
can be connected to the one-variable trigonometric and hyperbolic functions 
of order n (Ed6rlyi, 1955). 

For a Cartesian element of c~, ) .  t~ l(a) 

n - I  

X(a) "-= 2 i Xi e(a) 
i=1 

the associated determinant reduces to the one of the circulant matrix" 

i0 x.-i "'" x~) A(a)(x)= 1 x0 "'" x.2 

\ x~- l . . . . . .  x0 

Now, with the relations 

det A~) (~-i musi(x)) = 1 

det A~) (mushi(y))= 1 

one gets, just like R,,,  that (R)~i and (R)~,. are unimodular numbers. Summing 
on all the values of a in the exponential formulation of R~, one gets that 
R = R ~ = ~ R ~ = 2 . . .  R~=~  is also unimodular. With the Hausdorff-Campbell 
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formula, one writes 
r1--I 

R =exp ~ ~0 0 e~eS2 
i , . ]=O 

( i , j )  7 ~ (0,0) 

as a unimodular number. Moreover, any unimodular number can be written 
in this form since it is not singular, it has an exponential representation 
[nonsingular complex matrices have a defined logarithm and unimodular 
numbers can be represented by the use of (1.4) by nonsingular matrices]. 
Then, if 

exp (p/se{e = p  exp ~ ~00.e'te~ 
I "= i , j  = 0 

( i , j )  ~ (0,0) 

using det k(x) = 1, one gets that p = 1 and hence 

t } U = R=exp  ~ i j. (pis ele2, ~ooeC 
i,.j ~ 0 

( i , j )  ~ (0,0) 

in the set of unimodular numbers. 
We can prove, moreover, that the most general transformation on x 

leaving det A(x) invariant is given by two unimodular numbers acting respec- 
tively on the left and right sides: 

t t RR,L = exp ~ ~OL,Ri i e'j eJ 
i , j = O  

(i  j )  ~ (0,0) 

and x' = RLXRR is such that det A(x') = det A(x). Indeed, the symmetry group 
of det A(x) can be identified using hob and the isomorphism f, (1.4a), From 
the canonical basis H,,b, one builds the generators T, of SU(n) represented 
b y f - l ( T a )  = t,,. Because ~0~ is complex, RR,L is an element of SL(n, O) and 
det A(x) is invariant under the SLL(n, C) | SLR(n, C) transformations. �9 

As previously mentioned, Proposition 2.1 could have been more 
straightforwardly derived from the matrix representation X of x. But our 
approach underlines the correspondence between ~n) and SL(n, C) and 
allows the extension to cg2(n) of our results concerning the polar representation 
of GCA (Fleury et aL, 1991). In this connection, a systematic study of the 
exponential representation of the (~(~) algebra has been entered upon recently 
by Kwasniewski (1992). 

The connection between GCA and SU(n) is not new and was already 
mentioned by Ramakrishnan et al. (1969). 
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The quaternions allow a description of the composition of  rotations in 
{R3. In the same way, the generalized quaternions offer a description of  the 
composition law of SL(n ,  C) elements. But there is a major difference 
between the two cases. In the former case, quaternions and SU(2) have the 
same generators (in other words, the algebra of Pauli matrices is closed 
under commutation and anticommutation relations) and this is no longer 
true in the latter case as soon as n > 2. 

To conclude the section, let us mention that for an element of 
2 k~ ",,o2 the invariance group reduces to 

SLL(m,  C ) | SLL(n - m, C)  | SLn(m,  C ) | SLR(n - m, C)  

and in the special case (2.5) simply to SLL(2, C ) |  SLR(2, C). 

3. CONNECTION TO HYPERSPIN MANIFOLDS 
n - I  a b  

Up to now, the element x = Y~a.b= 0 X~h e, e2 has not been subjected to any 
condition. Consider the question of  Hermicity and define the Hermitian 
conjugation 

(e~'e b)+ = e2-%i -a (3.1) 

The set of  Hermitian generalized Clifford numbers define an n 2 vectorial 
space over {R: 

 ")H rm = x + :  x}  (3.2)  

the Hermitian basis of  which is 

l .  a b 
Nab ---- ~ [e l  e2 + el%{ -a) (3.2a) 

a , b = O  . . . . .  n - 1  
i 

l~b = -- ~ (e~e b -- e;b e; -a ) (3.2b) 

It is no longer an {R-algebra. A similar problem was solved by Jordan (1932), 
who introduced a modified multiplication law: 

x"  y =  � 8 9  

This commutative product  is not associative: 

(x, y, z ) = ( x ,  y)  . z - x .  ( y .  z)--/=O 

But it is flexible, 

(x, y, x ) =  0 
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and fulfills the Jordan identity, 

(x 2, y, x) = 0 

A representation of the Jordan algebra can thus be obtained from a GCA. 
For x += x, the transformation law has to preserve the Hermicity of x. 

The consequence is that RL = R~ and thus the symmetry group reduces to 
SL(n, C). This was the starting point of Finkelstein (1986) and Finkelstein 
et aI. (1986) when they introduced the concept of hyperspin manifold, the 
aim of which was to reconcile two different theories: 

(a) 

(b) 

The spin manifold which allows a spinorial decomposition of 
space-time (see, for instance, Penrose and Rindler, 1984). In such 
a description, one gets a 2nD space-time. 
The Kaluza-Klein theory, which leads, after compactification, to a 
4D manifold describing gravitation as well as Yang-Mills inter- 
actions (see, for instance, Duff et al., 1986, and references therein). 
In such a description we have an arbitrary-dimensional space and 
realistic Kaluza-Klein theories are not constructed using a 2 n- 
dimensional space (Witten, 1981). 

With the spinorial construction of the Minkowski space-time as a 
guidance, these authors have considered a complex n-dimensional space Y~n, 
namely the hyperspinor space, and hyperspinors belong to the n represen- 
tation of SL(n, C). With the use of the inequivalent complex conjugate 
representation Z +, they defined the n 2 hyperspin manifold Zn | Z +. For an 
element x of this space, they then built an n-linear metric 77: 

Itxll  ~ =  ~ , ,  . j '  �9 �9 �9 x ' ' ,  1 <_i,j<n 2 

by an appropriate determinant invariant under SL(n, C). Since 2;2 (the usual 
spinorial space) is naturally included in Zn, they obtained the embedding of 
the Minkowski space-time in the hyperspin manifold and meanwhile of the 
Lorentz group in SL(n, C). 

With the results established in Section 2, we propose an algebraic 
interpretation of the hyperspin approach in terms of GCA through the 
identification 

~n (~) y'~+ = (~2 (n)Herm (3 .3 )  

Taking m = 2 and ~ = 1 in (1.7), we obtain the embedding described above, 
which can be understood by the inclusions of Pauli numbers into the Hermi- 
tian generalized quaternions. Using the transformation property (1.2), one 
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can rewrite A(x) in the form they proposed: 

l xo+x3 x12+/y2 xln!y) 
A(x)~~ xl2-~iyl2" X o - - X 3  /~3 " 

\ x l , - i y l ,  

To conclude, we make the identification between the hyperspinors and the 
extended spinors of Popovici and Gh6orghe (1966b). Those extended spinors 
had been introduced by considering GCA in a way similar to the construc- 
tion of spinors from the Clifford algebra by Brauer and Weyl (1935). 

4. CONCLUSION 

The GCA ~2 t') has been provided with an n - ic metric invariant under 
SL(n, C) | SL(n, C). In the Hermitian limit, the symmetry group reduces 
to SL(n, C ), and for cg~,,) | oK2(--,,) to SL(m, C ) | SL(n - m, C ). For the 
peculiar case m = 2  and with a unit element in (g~"-") together with the 
Hermitian limit, one gets the Minkowski space-time as an inclusion of the 
hyperspin manifold. The same procedure applied to GCA (g~P) with p canon- 
ical generators leads to an n - ic metric on an nP-dimensional manifold. This 
seems to indicate some kind of analogy between the (gp(2) and Cgpt,) algebras 
which is strengthened by the matrix representation of (gp(") (Moringa and 
Nono, 1952; Morris, 1967; Fleury and Rausch de Traubenberg, 1992) ana- 
logous to the one used by Brauer and Weyl (1935) to obtain spinors in an 
arbitrary-dimensional space-time. However, this analogy has its limitations: 

(i) The Pauli matrices iinearize x z +y2 + z 2, polynomial which is SO(3) 
invariant, and SO(3) is included in SO(4), the invariance group 
of quaternions. But the generalized Pauli matrices allow the lineari- 
zation of x" + y n +  z", which is a polynomial having a discrete sym- 
metry group. 

(ii) Pauli matrices are sufficient to iinearize any quadratic form, but 
extended Pauli matrices cannot linearize any n > 2 form. Other 
matrices have to be taken into consideration (Fleury and Rausch 
de Traubenberg, 1992). 

(iii) When one calculates 

exp 
1 

E a,b=O (a,b) ~ (0,0) 

i~Pobcr~cr~-- exp i~" tr 
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one gets a closed formula: 

exp(;~ .  ~) = cos(q~ �9 ~) + sin(~ �9 ~)  ;~" ~ 

This is not true for cg~,) (n > 2). 
(iv) For n = 2, one has a coincidence between the generators of SU(2)  

and the three imaginary units of  the quaternions. This is no longer 
true for n > 2. 

To summarize, one can say that the properties lost when passing from 
quaternions to n2-ions are analogous to those lost when passing from quad- 
ratic forms to n-forms. This is the same thing mutatis mutandis for our 
~2 ~2) and cr GCA. 
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